Molecular dynamics modeling of particle and molecule interaction with solid and liquid surfaces

J.P. Allain, D.A. Alman,
M. Nieto, M.D. Coventry, Hua-Tan Qiu
and D.N. Ruzic

University of Illinois, Urbana-Champaign
Department of Nuclear, Plasma and Radiological Engineering

Plasma-Material Interaction Group

Outline of Work at the UIUC

- Molecular Dynamics simulations of hydrocarbon plasma-material interaction
- Molecular Dynamics simulations of liquid lithium to study self-bombardment reflection
- Analytical studies of backscattered and sputtered charge fraction at low energies
- Liquid lithium erosion enhancement studies implementing a cascade model from molecular dynamics in a modified version of VFTRIM-3D
- Recent progress with FIRE first wall Be transport and divertor mixing issues

MD Modeling of Hydrocarbons

- First surface used was graphite bombarded by hydrogen until saturation (~ 0.4 H:C)
- Second surface a "soft" H:C surface
 - Formed by deposition of thousands of hydrocarbons on a graphite surface
 - Emulates a redeposited carbon layer in a tokamak
 - Larger H:C ratio in this redeposited layer
 - Lower density
 - Carbon is less strongly bound
- Results show reflection is lower on the "soft" surface than the 0.4 H:C graphite at one energy (1 eV)
- Work continues to look at a full range of incident energies

Reflection from "soft" vs. "hard" surfaces

- Why is reflection lower on the "soft" surface
 - The top layer of the "soft" surface is less dense
 - Incident atoms/molecules can penetrate more easily
 - Once inside the surface, the particles are more likely to be trapped there
 - On the "hard" surface, incident particles are more apt to have a hard collision on the very top surface and bounce off
 - Observation of more movies may provide further insight

Reflection of carbon dimer and trimer molecules

- Why does C₂ stick more readily than C₃?
 - One reason could be the fully bonded atom at the center of the trimer molecule
 - The end atom may attempt to stick, but when the molecule swings into position a repulsive force is created

Carbon dimer molecules tend to stick readily

Carbon trimers are more likely to bounce off

Multi-scale problems: long time scale issues

- For example, does the graphite surface saturate at a lower H:C ratio at higher temperature?
- First attempt showed no difference between hydrogen concentration during H bombardment at room temp. & 1200 °C
- Possible issues:
 - Timescale for desorption of hydrogen is long ~10⁻⁶-10⁻⁴ s
 - These MD simulations (e.g. to look at reflection) typically run for 10⁻¹³-10⁻¹² s
- Recent progress
 - Implemented a variable timestep algorithm in the MD code
 - Factor of ~3 speedup vs. fixed timestep with comparable accuracy

First attempt

- Enabled a long (100 ps) run to look at H desorption from the H saturated graphite surface
- Hydrogen is visibly more mobile
- 41% more H evolved at higher T, but still not conclusive

Modeling of reflection and charge state of backscattered particles

- Sputtered lithium particles in the ionized state leave surface at about 1-5 eV and quickly return to surface due to the magnetic sheath potential. Need to determine backscattering of incident lithium ions.
- Semi-analytical models exist to determine the charge state of backscattered particles from alkali metals such as lithium.

MD modeling of lithium bombardment on liquid lithium surfaces

L.E. Gonzalez, p

- Investigation of reflection of lithium atoms on liquid lithium surfaces continues for NSTX conditions
 - 0.35 and 2 eV incident energy
 - 20 degrees incident angle
 - 473 K and 653 K surface temperatures
- Major changes have been made to the code to better incorporate lithium
 - Enabling lithium runs to be integrated into the distributed computing system already in use for hydrocarbon modeling (giving ~10x speed-up)
 - Calculation of ion fraction of reflected/sputtered atoms now built in
 - New liquid lithium potential data included[†]

L.E. Gonzalez, private comm. 2002 Universidad de Valladolid

Liquid lithium simulation setup

- Temperature control is achieved by using a simple velocity scaling technique at each time step¹⁻³ to maintain the desired temperature at the edges of the surface.
- The resulting target surface is an amorphous liquid lithium surface 42.2 by 42.2 Å and 34.2 Å deep.
 - 1. L. V. Woodcock, Chem. Phys. Lett. 10, 257 (1970).
 - 2. D. J. Evans, Mol. Phys. **37**, 1745 (1979).
 - 3. T. Schneider and E. Stoll, Phys. Rev. B **13**, 1216 (1976).

Molecular dynamics simulations of liquid lithium reflection

- NSTX cases: 473 and 653 K, 20-deg. incidence
- Reflection results show three distinct regions for low-energy selfbombardment reflection of lithium
- A region is found where the reflection coefficient varies little with incident energy (hyperthermal region)
- MD modeling continues to investigate this behavior as well as oblique bombardment (45,75-degree inc.)
- Other issues include: other temperatures and hydrogen treatment of lithium surface

0.35 eV, 20-deg inc, 653 K

Lithium reflection at oblique incidence

Incident particle energy (eV)

2.0 eV, 473 K at 45-deg inc.

2.0 eV, 653 K at 45-deg inc.

MD/TRIM liquid Li erosion enhancement modeling studies

- Lithium erosion enhancement is studied using molecular dynamics of Li bombardment of liquid Li†
- Near-surface energy cascades are found from MD results for a variety of system temperatures
- The recoil energy and angular distributions are implemented in a Monte Carlo code (modified VFTRIM-3D) to obtain absolute lithium sputtering yields for comparison with experimental Li erosion data
- In addition, the surface binding energy from MD is implemented in VFTRIM-3D as a function of system temperature

Figure shows near-surface energy cascade of recoils from a 100 eV, 45-deg. incident Li atom. Colors represent energy magnitudes (red – highest, blue - lowest). Only atoms with 10*kT or more are shown.

200 eV, 45-deg. Li on liquid Li, reflection and sputtering

Analysis of molecular dynamics simulations of liquid surfaces

- Efforts begun in building larger lattices being mindful of computational expense.
- The size of the lattice may be relevant in modeling incident energies ranging from 300-700 eV. The effect of size on cascade dynamics are currently under investigation.
- A lithium lattice of about 13,300 lithium atoms is now in use and has been heated to temperatures of 473 and 653 K. Equilibration times ~ 25-250 picoseconds.

Case for reflection with large lattice: 75-deg inc. 10 eV

T = 473 K

NSO/FIRE Modeling

- Original model
 - UEDGE plasma solution from Rognlien/Rensink was modified
 - Mesh extended out to first wall, plasma zones filled in
 - Modeled ion flux to first wall, including diffusive and anomalous transport
 - Flux = D x n_i / λ_n
 - $D_{perp} = D_{Bohm} = 0.06 T_e/B$
 - D_{anomalous} = 0.1 m²/s as in UEDGE
 - DEGAS2 used to calculate deuterium fluxes to first wall
 - Sputtering of beryllium from first wall calculated with VFTRIM-3D
 - Transport of sputtered Be to divertor calculated with WBC+
 - Results:
 - Be sputtering was low (2.2x10²⁰ s⁻¹)
 - Be current of 8.2x10¹⁹ s⁻¹ to inner and 2.9x10¹⁹ s⁻¹ to outer divertor plate
- Current flux model:
 - D_{perp} minimum is 0.1 m²/s
 - Ion density at last UEDGE zone used (rather than at zone adjacent to wall)
 - Results:
 - Total Be sputtering increases to 4x10²⁰ s⁻¹ (increased by about a factor of 2)
 - Be current of 1.8×10^{20} s⁻¹ (~ 2x) to inner and 8.4×10^{19} s⁻¹ (~3x) to outer divertor plate
- Beryllium flux to divertor goes to ANL for mixed material erosion analysis with the ITMC code

Conclusions and Future Work

- Work ongoing on reflection from "soft" and "hard" carbon surfaces
- C₃ reflects more than C₂ due to bonding nature of carbon trimer
- Reflection for low-energy Li on liquid Li shows large yields at thermal and hyperthermal energies
- The yield rises with angle of incidence, however functional behavior is different
- More work continues coupling MD simulations with TRIM in understanding nature of enhanced erosion of liquid Li (in particular) or liquid-metals (in general)...more in tomorrow's talks: Allain and Ruzic
- Li particles that reflect at thermal or hyperthermal energies will mostly consist of neutrals
- Be currents of the order of 10²⁰ s⁻¹ reach the inner and outer divertor of FIRE

